Microbes and Environments
Online ISSN : 1347-4405
Print ISSN : 1342-6311
ISSN-L : 1342-6311
Regular Paper
Requirement of γ-Aminobutyric Acid Chemotaxis for Virulence of Pseudomonas syringae pv. tabaci 6605
Stephany Angelia TumewuHidenori MatsuiMikihiro YamamotoYoshiteru NoutoshiKazuhiro ToyodaYuki Ichinose
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML
Supplementary material

2020 Volume 35 Issue 4 Article ID: ME20114

Details
Abstract

γ-Aminobutyric acid (GABA) is a widely distributed non-proteinogenic amino acid that accumulates in plants under biotic and abiotic stress conditions. Recent studies suggested that GABA also functions as an intracellular signaling molecule in plants and in signals mediating interactions between plants and phytopathogenic bacteria. However, the molecular mechanisms underlying GABA responses to bacterial pathogens remain unknown. In the present study, a GABA receptor, named McpG, was conserved in the highly motile plant-pathogenic bacteria Pseudomonas syringae pv. tabaci 6605 (Pta6605). We generated a deletion mutant of McpG to further investigate its involvement in GABA chemotaxis using quantitative capillary and qualitative plate assays. The wild-type strain of Pta6605 was attracted to GABA, while the ΔmcpG mutant abolished chemotaxis to 10‍ ‍mM GABA. However, ΔmcpG retained chemotaxis to proteinogenic amino acids and succinic semialdehyde, a structural analog of GABA. Furthermore, ΔmcpG was unable to effectively induce disease on host tobacco plants in three plant inoculation assays: flood, dip, and infiltration inoculations. These results revealed that the GABA sensing of Pta6605 is important for the interaction of Pta6605 with its host tobacco plant.

Content from these authors
© 2020 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles.
Previous article Next article
feedback
Top