Microbes and Environments
Online ISSN : 1347-4405
Print ISSN : 1342-6311
ISSN-L : 1342-6311
Current issue
Showing 1-8 articles out of 8 articles from the selected issue
Regular Paper
  • Mamoru Oshiki, Haruna Hiraizumi, Hisashi Satoh, Satoshi Okabe
    Type: Regular Paper
    2020 Volume 35 Issue 4 ME20086
    Published: 2020
    Released: October 24, 2020
    JOURNALS OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    The activity of anaerobic ammonia-oxidizing (anammox) bacteria is considered to depend on cell density; however, this has not yet been confirmed due to the fastidious nature of anammox bacteria (e.g., slow growth, oxygen sensitivity, and rigid aggregate formation). In the present study, the cell density-dependent occurrence of anammox activity (14-15N2 gas production rate) was investigated using planktonic enrichment cultures of Candidatus Brocadia sinica. This activity was detectable when the density of cells was higher than 107‍ ‍cells‍ ‍mL–1 and became stronger with increases in cell density. At the cell densities, the transcription of the BROSI_A1042 and BROSI_A3652 genes, which are potentially involved in the biosynthesis and reception of N-acyl homoserine lactone (AHL), was detectable in Brocadia sinica cells. The presence of AHL molecules in the MBR culture of B. sinica was confirmed by an AHL reporter assay and gas chromatography mass spectrometry analysis. The exogenous addition of the MBR culture extract and AHL molecules (a cocktail of C6, C8, C10, and C12-homoserine lactones) increased the specific 14-15N2 production rate of B. sinica. These results suggest that the specific anammox activity of B. sinica is regulated by AHL-mediated quorum sensing.

Short Communication
  • Yuka Adachi, Masao Inoue, Takashi Yoshida, Yoshihiko Sako
    Type: Short Communication
    2020 Volume 35 Issue 4 ME20101
    Published: 2020
    Released: October 22, 2020
    JOURNALS OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    The metabolic engineering of carbon monoxide (CO) oxidizers has the potential to create efficient biocatalysts to produce hydrogen and other valuable chemicals. We herein applied markerless gene deletion to CO dehydrogenase/energy-converting hydrogenase (CODH/ECH) in the thermophilic facultative anaerobe, Parageobacillus thermoglucosidasius. We initially compared the transformation efficiency of two strains, NBRC 107763T and TG4. We then disrupted CODH, ECH, and both enzymes in NBRC 107763T. The characterization of growth in all three disruptants under 100% CO demonstrated that both enzymes were essential for CO-dependent growth with hydrogen production in P. thermoglucosidasius. The present results will become a platform for the further metabolic engineering of this organism.

Regular Paper
  • Hui-Zhen Fu, Malek Marian, Takuo Enomoto, Haruhisa Suga, Masafumi Shim ...
    Type: Regular Paper
    2020 Volume 35 Issue 4 ME20106
    Published: 2020
    Released: October 22, 2020
    JOURNALS OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    The present study aimed to investigate the potential of simple sugars for use as protection agents in the control of tomato bacterial wilt caused by Ralstonia pseudosolanacearum. Based on the sugar assimilation patterns of the pathogen, four unassimilable sugars (L-arabinose, maltose, D-raffinose, and D-ribose) were selected from 10 representative sugars present in tomato root exudates. These sugars were evaluated for their effects on bacterial wilt using a tomato seedling bioassay. The application of 0.25% L-arabinose significantly reduced disease severity and was, thus, selected as a candidate for further evaluations in a pot experiment under glasshouse conditions. The results obtained showed that the disease suppressive effects of L-arabinose slightly increased at higher concentrations; drench treatments at 0.1, 0.25, and 0.5% reduced disease severity by ca. 48, 70, and 87%, respectively. The drench treatment with 0.5% L-arabinose significantly reduced the pathogen population in the rhizosphere and stem tissues of tomato plants without any antibacterial activity. Real-time reverse-transcription PCR revealed that the expression of salicylic acid-dependent and ethylene-dependent defense genes was significantly enhanced in the stem tissues of L-arabinose-treated tomato plants following the pathogen inoculation. These results suggest that soil drenching with L-arabinose effectively suppresses tomato bacterial wilt by preventing pathogen proliferation in the rhizosphere and stem tissues of tomato plants. This is the first study to report the potential of L-arabinose as a safe, eco-friendly, and cost-effective plant protection agent for the control of tomato bacterial wilt.

Regular Paper
  • Yosuke Nojiri, Yuka Kaneko, Yoichi Azegami, Yutaka Shiratori, Nobuhito ...
    Type: Regular Paper
    2020 Volume 35 Issue 4 ME20069
    Published: 2020
    Released: October 06, 2020
    JOURNALS OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    Nitrification–denitrification processes in the nitrogen cycle have been extensively examined in rice paddy soils. Nitrate is generally depleted in the reduced soil layer below the thin oxidized layer at the surface, and this may be attributed to high denitrification activity. In the present study, we investigated dissimilatory nitrate reduction to ammonium (DNRA), which competes with denitrification for nitrate, in order to challenge the conventional view of nitrogen cycling in paddy soils. We performed paddy soil microcosm experiments using 15N tracer analyses to assess DNRA and denitrification rates and conducted clone library analyses of transcripts of nitrite reductase genes (nrfA, nirS, and nirK) in order to identify the microbial populations carrying out these processes. The results obtained showed that DNRA occurred to a similar extent to denitrification and appeared to be enhanced by a nitrate limitation relative to organic carbon. We also demonstrated that different microbial taxa were responsible for these distinct processes. Based on these results and previous field observations, nitrate produced by nitrification within the surface oxidized layer may be reduced not only to gaseous N2 via denitrification, but also to NH4+ via DNRA, within the reduced layer. The present results also indicate that DNRA reduces N loss through denitrification and nitrate leaching and provides ammonium to rice roots in rice paddy fields.

Regular Paper
  • Hui-Zhen Fu, Malek Marian, Takuo Enomoto, Ayaka Hieno, Hidemasa Ina, H ...
    Type: Regular Paper
    2020 Volume 35 Issue 4 ME20078
    Published: 2020
    Released: October 02, 2020
    JOURNALS OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    The aim of the present study was to identify a strain of endophytic Bacillus species that control tomato bacterial wilt by foliar spray application. Fifty heat-tolerant endophytic bacteria were isolated from the surface-sterilized foliar tissues of symptomless tomato plants that had been pre-inoculated with the pathogen Ralstonia pseudosolanacearum. In the primary screening, we assessed the suppressive effects of a shoot-dipping treatment with bacterial strains against bacterial wilt on tomato seedlings grown on peat pellets. Bacillus sp. strains G1S3 and G4L1 significantly suppressed the incidence of tomato bacterial wilt. In subsequent pot experiments, the biocontrol efficacy of foliar spray application was examined under glasshouse conditions. G4L1 displayed consistent and significant disease suppression, and, thus, was selected as a biocontrol candidate. Moreover, the pathogen population in the stem of G4L1-treated plants was markedly smaller than that in control plants. A quantitative real-time PCR analysis revealed that the foliar spraying of tomato plants with G4L1 up-regulated the expression of PR-1a and LoxD in stem and GluB in roots upon the pathogen inoculation, implying that the induction of salicylic acid-, jasmonic acid-, and ethylene-dependent defenses was involved in the protective effects of this strain. In the re-isolation experiment, G4L1 efficiently colonized foliar tissues for at least 4‍ ‍weeks after spray application. Collectively, the present results indicate that G4L1 is a promising biocontrol agent for tomato bacterial wilt. Furthermore, to the best of our knowledge, this is the first study to report the biocontrol of bacterial wilt by the foliar spraying with an endophytic Bacillus species.

Regular Paper
  • Yu Maeda, Kazumori Mise, Wataru Iwasaki, Akira Watanabe, Susumu Asakaw ...
    Type: Regular Paper
    2020 Volume 35 Issue 4 ME20093
    Published: 2020
    Released: September 19, 2020
    JOURNALS OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    Soils are characterized by diverse biotic and abiotic constituents, and this complexity hinders studies on the effects of individual soil components on microorganisms in soil. Although artificial soils have been used to overcome this issue, anoxic soils have not yet been examined. We herein aimed to create artificial soil that reproduces anaerobic methane production by soil from a rice field. Organic materials and mineral particles separated from rice field soil were mixed to prepare an artificial soil matrix; the matrix was added with a small volume of a soil suspension as a microbial inoculum. When the microbial inoculum was added immediately after matrix preparation, anaerobic decomposition was markedly less than that by original soil. When the inoculum was added 9–15 days after soil matrix preparation, anaerobic CO2 and methane production was markedly activated, similar to that by original soil after 40 days of incubation, which suggested that the maturation of the soil matrix was crucial for the reproduction of anaerobic microbial activities. The diversity of the microbial community that developed in artificial soil was markedly less than that in original soil, whereas their predicted functional profiles were similar. Humic substances altered the composition and network patterns of the microbial community. These results suggested that the functional redundancy of soil microorganisms was sustained by different microbial sub-communities. The present study demonstrated that artificial soil is a useful tool for investigating the effects of soil components on microorganisms in anoxic soil.

Regular Paper
  • Shuji Matsushita, Takafumi Hiroe, Hiromi Kambara, Ahmad Shoiful, Yoshi ...
    Type: Regular Paper
    2020 Volume 35 Issue 4 ME20052
    Published: 2020
    Released: September 19, 2020
    JOURNALS OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    We focused on the use of abiotic MnO2 to develop reactors for enriching manganese-oxidizing bacteria (MnOB), which may then be used to treat harmful heavy metal-containing wastewater and in the recovery of useful minor metals. Downflow hanging sponge (DHS) reactors were used under aerobic and open conditions to investigate the potential for MnOB enrichment. The results of an experiment that required a continuous supply of organic feed solution containing Mn(II) demonstrated that MnOB enrichment and Mn(II) removal were unsuccessful in the DHS reactor when plain sponge cubes were used. However, MnOB enrichment was successful within a very short operational period when sponge cubes initially containing abiotic MnO2 were installed. The results of a microbial community analysis and MnOB isolation revealed that MnOB belonging to Comamonadaceae or Pseudomonas played a major role in Mn(II) oxidation. Successful MnOB enrichment was attributed to several unidentified species of Chitinophagaceae and Gemmataceae, which were estimated to be intolerant of MnO2, being unable to grow on sponge cubes containing MnO2. The present results show that MnO2 exerted anti-bacterial effects and inhibited the growth of certain non-MnOB groups that were intolerant of MnO2, thereby enabling enriched MnOB to competitively consume more substrate than MnO2-intolerant bacteria.

Regular Paper
  • Koji Mori, Kenta Sakurai, Akira Hosoyama, Takeshi Kakegawa, Satoshi Ha ...
    Type: Regular Paper
    2020 Volume 35 Issue 4 ME20046
    Published: 2020
    Released: September 18, 2020
    JOURNALS OPEN ACCESS FULL-TEXT HTML

    A novel anaerobic heterotrophic strain, designated strain sy52T, was isolated from a hydrothermal chimney at Suiyo Seamount in the Pacific Ocean. A 16S rRNA gene analysis revealed that the strain belonged to the family Petrotogaceae in the phylum Thermotogae. The strain was mesophilic with optimum growth at 48°C and the phylum primarily comprised hyperthermophiles and thermophiles. Strain sy52T possessed unique genomic characteristics, such as an extremely low G+C content and 6 copies of rRNA operons. Genomic analyses of strain sy52T revealed that amino acid usage in the predicted proteins resulted from adjustments to mesophilic environments. Genomic features also indicated independent adaptions to the mesophilic environment of strain sy52T and Mesotoga species, which belong to the mesophilic lineage in the phylum Thermotogae. Based on phenotypic and phylogenetic evidence, strain sy52T is considered to represent a novel genus and species in the family Petrotogaceae with the proposed name Tepiditoga spiralis gen. nov., sp. nov.

feedback
Top