Microbes and Environments
Online ISSN : 1347-4405
Print ISSN : 1342-6311
ISSN-L : 1342-6311
Regular Paper
Dynamics of the Microbial Community and Opportunistic Pathogens after Water Stagnation in the Premise Plumbing of a Building
Iftita RahmatikaFutoshi KurisuHiroaki FurumaiIkuro Kasuga
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML
Supplementary material

2022 Volume 37 Issue 1 Article ID: ME21065

Details
Abstract

In premise plumbing, microbial water quality may deteriorate under certain conditions, such as stagnation. Stagnation results in a loss of disinfectant residual, which may lead to the regrowth of microorganisms, including opportunistic pathogens. In the present study, microbial regrowth was investigated at eight faucets in a building over four seasons in one year. Water samples were obtained before and after 24 h of stagnation. In the first 100‍ ‍mL after stagnation, total cell counts measured by flow cytometry increased 14- to 220-fold with a simultaneous decrease in free chlorine from 0.17–0.36‍ ‍mg L–1 to <0.02‍ ‍mg L–1. After stagnation, total cell counts were not significantly different among seasons; however, the composition of the microbial community varied seasonally. The relative abundance of Pseudomonas spp. was dominant in winter, whereas Sphingomonas spp. were dominant in most faucets after stagnation in other seasons. Opportunistic pathogens, such as Legionella pneumophila, Mycobacterium avium, Pseudomonas aeruginosa, and Acanthamoeba spp., were below the quantification limit for real-time quantitative PCR in all samples. However, sequences related to other opportunistic pathogens, including L. feeleii, L. maceachernii, L. micdadei, M. paragordonae, M. gordonae, and M. haemophilum, were detected. These results indicate that health risks may increase after stagnation due to the regrowth of opportunistic pathogens.

Content from these authors
© 2022 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles.
Previous article Next article
feedback
Top