Microbes and Environments
Online ISSN : 1347-4405
Print ISSN : 1342-6311
ISSN-L : 1342-6311
Regular Paper
Effects of NaCl Treatment on Root Nodule Formation, Isoflavone Secretion in Soybean, and Nodulation Gene Expression in Rhizobia
Yoshikazu NitawakiTakaaki YasukochiShinya NaonoAkihiro YamamotoYuichi Saeki
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2024 Volume 39 Issue 4 Article ID: ME24023

Details
Abstract

We herein investigated the effects of salt (NaCl) stress on soybean nodulation by rhizobial strains. We specifically exami­ned: (1) the effects of NaCl on nodule maturity and positioning by inoculating three rhizobial strains (Bradyrhizobium diazoefficiens USDA110T, Bradyrhizobium elkanii USDA31, and Sinorhizobium fredii USDA191) onto soybean variety CNS, (2) the effects of the NaCl treatment on isoflavones (daidzein and genistein) secretion by CNS, (3) the effects of the NaCl treatment on gene expression induced by daidzein and genistein in rhizobia, and (4) the effects of the NaCl treatment on rhizobial growth. The results obtained were as follows: (1) the NaCl treatment delayed nodule development and reduced nodulation on the primary root following the USDA110T inoculation, minimal sensitivity regarding nodule formation in the USDA 31 inoculation, and significantly increased the mature nodule number and nodules on the primary root following the USDA 191 inoculation. (2) The NaCl treatment significantly reduced the secretion of daidzein from soybean roots, but did not significantly affect that of genistein. (3) NaCl treatment induced a significant decrease in genistein-induced nodC expression in USDA110T, but not in USDA31, and also caused a significant reduction in daidzein-induced nodC expression, but not genistein-induced expression, in USDA191. (4) NaCl treatment reduced survivability under acidic conditions, but increased survivability under saline-alkaline conditions for USDA191 than bradyrhizobia. These results indicate that saline conditions give S. fredii a competitive advantage over Bradyrhizobium during soybean infection.

Content from these authors
© 2024 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles.

This article is licensed under a Creative Commons [Attribution 4.0 International] license.
https://creativecommons.org/licenses/by/4.0/
Previous article Next article
feedback
Top