Microbes and Environments
Online ISSN : 1347-4405
Print ISSN : 1342-6311
ISSN-L : 1342-6311

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Low Nitrogen Fertilization Adapts Rice Root Microbiome to Low Nutrient Environment by Changing Biogeochemical Functions
Seishi IkedaKazuhiro SasakiTakashi OkuboAkifumu YamashitaKimihiro TerasawaZhihua BaoDongyan LiuTakeshi WatanabeJun MuraseSusumu AsakawaShima EdaHisayuki MitsuiTadashi Satoand Kiwamu Minamisawa
著者情報
ジャーナル フリー 早期公開

論文ID: ME13110

この記事には本公開記事があります。
詳細
抄録

Reduced fertilizer usage is one of the objectives of field management in the pursuit of sustainable agriculture. Here,we report on shifts of bacterial communities in paddy rice ecosystems with low (LN), standard (SN), and high (HN) levels of N fertilizer application (0, 30, and 300 kg N ha−1, respectively). The LN field had received no N fertilizer for 5years prior to the experiment. The LN and HN plants showed a 50% decrease and a 60% increase in biomass compared with the SN plant biomass, respectively. Analyses of 16S rRNA genes suggested shifts of bacterial communities between the LN and SN root microbiomes, which were statistically confirmed by metagenome analyses. The relative abundances of Burkholderia, Bradyrhizobium and Methylosinus were significantly increased in root microbiome of the LN field relative to the SN field. Conversely, the abundance of methanogenic archaea was reduced in the LN field relative to the SN field. The functional genes for methane oxidation (pmo and mmo) and plant association (acdS and iaaMH) were significantly abundant in the LN root microbiome. Quantitative PCR of pmoA/mcrA genes and a 13Cmethane experiment provided evidence of more active methane oxidation in the rice roots of the LN field. In addition, functional genes for the metabolism of N, S, Fe, and aromatic compounds were more abundant in the LN root microbiome. These results suggest that low-N-fertilizer management is an important factor in shaping the microbial community structure containing key microbes for plant associations and biogeochemical processes in paddy rice ecosystems.

著者関連情報
© 2014 Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology
feedback
Top