Microbes and Environments
Online ISSN : 1347-4405
Print ISSN : 1342-6311
ISSN-L : 1342-6311

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Heterogeneity of Microbial Communities on Deep-Sea Ferromanganese Crusts in the Takuyo-Daigo Seamount
Shingo KatoTomoyo OkumuraKatsuyuki UematsuMiho HiraiKoichi IijimaAkira UsuiKatsuhiko Suzuki
著者情報
ジャーナル フリー 早期公開

論文ID: ME18090

この記事には本公開記事があります。
詳細
抄録

Rock outcrops of aged deep-sea seamounts are generally covered with Fe and Mn oxides, known as ferromanganese (Fe–Mn) crusts. Although the presence of microorganisms in Fe–Mn crusts has been reported, limited information is currently available on intra- and inter-variations in crust microbial communities. Therefore, we collected several Fe–Mn crusts in bathyal and abyssal zones (water depths of 1,150–5,520 m) in the Takuyo-Daigo Seamount in the northwestern Pacific, and examined microbial communities on the crusts using culture-independent molecular and microscopic analyses. Quantitative PCR showed that microbial cells were abundant (106–108 cells g–1) on Fe–Mn crust surfaces through the water depths. A comparative 16S rRNA gene analysis revealed community differences among Fe–Mn crusts through the water depths, which may have been caused by changes in dissolved oxygen concentrations. Moreover, community differences were observed among positions within each Fe–Mn crust, and potentially depended on the availability of sinking particulate organic matter. Microscopic and elemental analyses of thin Fe–Mn crust sections revealed the accumulation of microbial cells accompanied by the depletion of Mn in valleys of bumpy crust surfaces. Our results suggest that heterogeneous and abundant microbial communities play a role in the biogeochemical cycling of Mn, in addition to C and N, on crusts and contribute to the extremely slow growth of Fe–Mn crusts.

著者関連情報
© 2018 Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant and Microbe Interactions
feedback
Top