JSME International Journal Series A Solid Mechanics and Material Engineering
Online ISSN : 1347-5363
Print ISSN : 1344-7912
ISSN-L : 1344-7912
Inelastic Response and Stability of Titanium Alloy Tubes under Cyclic Bending
Chien-Min HSUShyh-Bin CHIOUYih-Shiuan CHANG
Author information

2000 Volume 43 Issue 1 Pages 63-68


The response and stability of titanium alloy tubes subjected to cyclic bending are presented in this paper. The curvature-ovalization measurement apparatus, designed by Pan et al., is used for conducting the present curvature-controlled experiments. It is observed from the moment-curvature curve that the titanium alloy tube is cyclically harden and becomes steady after a few cycles for symmetric curvature-controlled bending. However, from the ovalization-curvature curve, the ovalization of the tube cross-section increases in a ratchetting manner with the number of cycles. Owing to the progressive accumulation of the ovalization of the tube cross-section during the cyclic bending, the titanium alloy tubes buckle eventually. Theoretical formulation, proposed by Kyriakides and Shaw, is used for investigating the relationship between the magnitude of the controlled curvature range and the number of cycles to produce buckling. Good agreement between the experimental and theoretical results is achieved. Furthermore, experimental data of the titanium alloy tubes from present study are compared with the experimental results of 6061-T6 aluminum and 1018 steel tubes tested by Kyriakides and Shaw. It is shown that for similar outer diameter/wall thickness ratio, the stronger metal tube exhibits a shorter number of cycles to produce buckling.

Information related to the author
© The Japan Society of Mechanical Engineers
Previous article Next article