JSME International Journal Series B Fluids and Thermal Engineering
Online ISSN : 1347-5371
Print ISSN : 1340-8054
ISSN-L : 1340-8054
Numerical Simulation of Fluid Flow
Lattice Boltzmann Simulation of Natural Convection in a Square Cavity
Junya ONISHIYu CHENHirotada OHASHI
Author information
JOURNAL FREE ACCESS

2001 Volume 44 Issue 1 Pages 53-62

Details
Abstract
In this paper, we describe the development of a lattice Boltzmann scheme for incompressible thermohydrodynamics. Being based on kinetic theory, the scheme simulates macroscopic fluid flows and heat transfers with the use of distribution functions. A systematic derivation of the lattice Boltzmann scheme from the continuous Boltzmann equation is discussed in details. We find that a 5-velocity model can be employed to simulate heat transfer in such a case where the viscous and compressive heating effects are negligible. As a benchmark, numerical simulations of natural convection in a square cavity are carried out. Through the results, the scheme is found to have a second-order convergence rate. In addition, the scheme is verified to be as accurate as conventional methods over a wide range of Rayleigh numbers.
Content from these authors
© 2001 by The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top