JSME International Journal Series B Fluids and Thermal Engineering
Online ISSN : 1347-5371
Print ISSN : 1340-8054
ISSN-L : 1340-8054
PAPERS
The Role of Fragmentation Mechanism in Large-Scale Vapor Explosions
Jie LIUSeiichi KOSHIZUKAYoshiaki OKA
Author information
JOURNAL FREE ACCESS

2004 Volume 47 Issue 2 Pages 268-276

Details
Abstract
A non-equilibrium, multi-phase, multi-component code PROVER-I is developed for propagation phase of vapor explosion. A new thermal fragmentation model is proposed with three kinds of time scale for modeling instant fragmentation, spontaneous nucleation fragmentation and normal boiling fragmentation. The role of fragmentation mechanisms is investigated by the simulations of the pressure wave propagation and energy conversion ratio of ex-vessel vapor explosion. The spontaneous nucleation fragmentation results in a much higher pressure peak and a larger energy conversion ratio than hydrodynamic fragmentation. The instant fragmentation gives a slightly larger energy conversion ratio than spontaneous nucleation fragmentation, and the normal boiling fragmentation results in a smaller energy conversion ratio. The detailed analysis of the structure of pressure wave makes it clear that thermal detonation exists only under the thermal fragmentation circumstance. The vapor explosion is weak in larger vapor volume fraction conditions. In a large-scale vapor explosion, the hydrodynamic fragmentation is essential when the pressure wave becomes strong, so a small energy conversion ratio is expected.
Content from these authors
© 2004 by The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top