JSME International Journal Series B Fluids and Thermal Engineering
Online ISSN : 1347-5371
Print ISSN : 1340-8054
ISSN-L : 1340-8054
PAPERS
Multi Parameters Effect on Thermohydraulic Instability in Natural Circulation Boiling Water Reactor during Startup
Muhammad Hadid SUBKIMasanori ARITOMINoriyuki WATANABEMoon Ki CHUNGHiroshige KIKURA
Author information
JOURNAL FREE ACCESS

2004 Volume 47 Issue 2 Pages 277-286

Details
Abstract

The purpose of the study is to experimentally investigate driving mechanism of major instabilities simulated in a natural circulation experimental loop, under a predetermined range of system operating pressure and inlet subcoolings. Pressure range of 0.1 up to 0.7MPa, input heat flux range of 0 up to 577kW/m2, and inlet subcoolings of 5, 10 and 15K respectively, are applied in the experiments. The objective of the study is to formulate a rational startup procedure, in which major thermohydraulic instabilities can be detected and prevented. The study clarifies that four (4) kinds of thermohydraulic instability might occur even up to a higher pressure of 0.7MPa. The instabilities' sequence is as follows: (1) geysering induced by condensation accompanied by flashing, (2) oscillation induced by hydrostatic head fluctuation, (3) density wave oscillations, and (4) flashing accompanying those instabilities. The experiments confirmed that the geysering region gets narrower and suppressed with the increased system pressure. With chimneys, natural circulation can be achieved reliably and more easily. However, the flashing in the chimney cannot be avoided at low system pressure. Stable two-phase natural circulation can be established if the system pressure is increased beyond 0.7MPa, after the high frequency density eave oscillation thoroughly suppressed. The experiments were analyzed based on frequency domain of each instability phenomenon.

Content from these authors
© 2004 by The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top