計算力学講演会講演論文集
Online ISSN : 2424-2799
セッションID: 307
会議情報

深層学習を用いたトポロジー最適化の効率化
*土居 周平五十嵐 一
著者情報
会議録・要旨集 フリー

詳細
抄録

This paper presents a new topology optimization of rotating machines using deep learning. The classifiers of the relations between the motor shape and its torque characteristics are made by training of a convolutional neural network (CNN). The training data is obtained during a topology optimization of torque characteristics based on the finite element method (FEM). Then the minimization of the iron loss with maintaining the torque characteristics can be processed effectively using the classifiers.

著者関連情報
© 2018 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top