計算力学講演会講演論文集
Online ISSN : 2424-2799
セッションID: 117
会議情報

第一原理ビッグデータに基づいたBCC鉄原子間ポテンシャルの開発
*森 英喜尾崎 泰助
著者情報
会議録・要旨集 フリー

詳細
抄録

We construct the atomic artificial neural network (ANN) potential for investigation of dislocation mechanics and dynamics in body-centered cubic (BCC) iron based on Density functional theory (DFT) reference data. The bulk properties and defect formation energies predicted by the constructed ANN potential are in good agreement with reference DFT calculations. The 1/2[111] screw dislocation core structure and its energetics predicted by the ANN potential are in excellent agreement with DFT calculations. These results clearly show the excellent reproducibility and generalization ability of the constructed ANN potential.

著者関連情報
© 2019 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top