計算力学講演会講演論文集
Online ISSN : 2424-2799
セッションID: 16-03
会議情報

深層学習による最適積分点数の推定
*柏原 大輝大石 篤哉
著者情報
会議録・要旨集 認証あり

詳細
抄録

Element stiffness matrices in the FEM are usually calculated with numerical quadrature, such as the Gauss-Legendre quadrature. The accuracy of the quadrature for an element depends on its shape. Deep learning can find the optimal number of quadrature points for an element, which can improve the computational efficiency. In this paper, the DL-based prediction of the optimal number of quadrature points of finite elements is applied to quadratic elements, such as quadratic hexahedral elements and quadratic tetrahedral elements, where non-corner nodes effect the convergence of the numerical quadrature. Basic properties of the proposed method for quadratic elements are investigated in detail through some numerical examples.

著者関連情報
© 2022 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top