計算力学講演会講演論文集
Online ISSN : 2424-2799
セッションID: OS-1310
会議情報

再帰的構造を持つリオーダリングによるAMG-CG法の高速化
*河原井 啓林 雅江松永 拓也奥田 洋司
著者情報
会議録・要旨集 認証あり

詳細
抄録

The Matrix Power Kernel (MPK) plays an important role in the Algebraic Multigrid-Conjugate Gradient (AMG-CG) method, when using the Chebyshev polynomial smoother. In this study, we propose a new kernel for the MPK, which combines a Depth-First Search (DFS)-based MPK implementation with a reordering that has a recursive structure. Our MPK implementation reduces the need for synchronization among OpenMP threads, thereby simplifying the implementation and improving the performance. Results from numerical experiments show that our method consistently reduces the cache misses and the computation time across all OpenMP thread conditions, outperforming the baseline methods. The proposed method also improves the acceleration rate of MPK.

著者関連情報
© 2023 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top