計算力学講演会講演論文集
Online ISSN : 2424-2799
セッションID: OS-2013
会議情報

分子動力学法と機械学習によるbcc鉄のき裂進展シミュレーション
*齋藤 快斗椎原 良典
著者情報
会議録・要旨集 認証あり

詳細
抄録

This study integrates machine-learning potentials (MLP) into crack propagation simulations, comparing the obtained atomic structural changes and stress distribution in four crack systems with the ones by embedded-atom-method (EAM) and modified-EAM (MEAM) potentials. The MLP predicts stress concentration at crack tips, with increased load leading to bond breakage and cleavage, implying brittle fracture. In contrast, EAM and MEAM suggest ductile failure, with observed dislocation ejection and gradual crack opening due to structural changes. Overall, MLP exhibits a distinct fracture tendency compared to conventional potentials.

著者関連情報
© 2023 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top