計算力学講演会講演論文集
Online ISSN : 2424-2799
セッションID: OS-2406
会議情報

Physics-Informed Neural Networksに基づく3次元弾性体の固有振動数の推定
*宮田 貴広高橋 徹Cui Yi松本 敏郎
著者情報
会議録・要旨集 認証あり

詳細
抄録

We aim at developing a Physics-Informed Neural Network (PINN) to estimate eigenfrequencies of 3D elastic bodies rapidly and accurately. As the first step, we consider a Convolutional Neural Network (CNN), which is based on the VGGnet. The CNN is trained by a dataset of geometries, volumes, and (first-order) eigenfrequencies of elastic bodies. The relative error of the estimated eigenfrequency was about 15% and 30% for the training and validation data, respectively. This result indicates to consider a PINN by introducing eigenequations to the loss function, for example.

著者関連情報
© 2023 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top