計算力学講演会講演論文集
Online ISSN : 2424-2799
セッションID: OS-1205
会議情報

反復型領域分割法によるPINNの並列計算
*荻野 正雄
著者情報
会議録・要旨集 認証あり

詳細
抄録

Physics-informed neural network (PINN) is a machine learning method for approximating the initial-boundary value problems of partial differential equations. This research focuses on parallel computation of the PINN using the iterative domain decomposition method (DDM). The DDM is known as a parallel numerical method for the finite element method (FEM) and an iterative DDM solves an interface system, which is introduced by a static condensation, using iterative methods. This research applies the iterative DDM to the PINN for the two-dimensional Poisson’s equation (differential form) and evaluates performances between FEM and PINN.

著者関連情報
© 2024 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top