計算力学講演会講演論文集
Online ISSN : 2424-2799
セッションID: OS-2208
会議情報

深層学習による要素積分の最適化
*大石 篤哉宗和 亮汰
著者情報
会議録・要旨集 認証あり

詳細
抄録

Element stiffness matrices in the FEM are usually calculated using Gauss-Legendre quadrature, and the accuracy of the stiffness matrix of an element depends on the shape of the element. Optimizing quadrature parameters can help to improve the accuracy of the stiffness matrix, and a new method to predict optimal quadrature parameters to be used for each element by deep learning has been proposed. Using the predicted quadrature parameters for the numerical quadrature of an element, one can expect much better accuracy for the stiffness matrix. In this paper, optimal quadrature parameters for many elements are obtained using the steepest decent method, and a feed forward neural network is trained using the obtained parameters. Characteristics of the proposed method are investigated in detail.

著者関連情報
© 2024 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top