計算力学講演会講演論文集
Online ISSN : 2424-2799
セッションID: OS-2403
会議情報

深層学習モデルと遺伝的アルゴリズムを組み合わせた2次元フォノニック結晶の分散特性に関する逆問題解析
*佐藤 雄治深谷 優梨鶴田 健二
著者情報
会議録・要旨集 認証あり

詳細
抄録

In the design of phononic crystals (PnCs), many studies have focused on maximizing the band gap (BG) size through various optimization methods such as topology optimization, Monte Carlo simulations, and other optimization algorithms. On the other hand, it is difficult to find materials properties and structures of PnCs with desired BG frequency and size as an "inverse problem approach". Recently, new approaches to the optimization problems based on the development of artificial intelligence technology have been attracting much attention. In this study, we utilize a deep learning model in combination with a genetic algorithm (NSGA-II) to solve the inverse problem, developing a methodology to identify the optimal material properties and structural parameters of PnCs that achieve specific BG frequency and size requirements.

著者関連情報
© 2024 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top