設計工学・システム部門講演会講演論文集
Online ISSN : 2424-3078
セッションID: 3404
会議情報
3404 ラディアルベーシス関数と領域適合型遺伝的アルゴリズムを用いた近似最適化 : 探索領域の絞込みに関する検討(OS03/近似最適化)
荒川 雅生中山 弘隆石川 浩
著者情報
会議録・要旨集 フリー

詳細
抄録
Radius Basis Function Network (RBFN) can make up response surface of interpolation quite well even if it has multi-peak. Thus, we can optimize functions that is not explicitly expressed, such as we use in Engineering Analysis. In unconstraint case, it works successively to reduce a number of function calls, to obtain global optimum value and also to obtain over all response surface. On the other hand, when it is constrained, we need a number of function calls onry to find feasible region. In this study, we use RBF to classify feasible region by given data, and give a new data according to the information that is given by RBF classifier.
著者関連情報
© 2001 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top