設計工学・システム部門講演会講演論文集
Online ISSN : 2424-3078
セッションID: 3211
会議情報
3211 多目的遺伝的アルゴリズムによるデータクラスタリング(OS4 最適化計算法(II),未来社会を支えるものづくりとひとづくり(設計・システムから))
真武 信和廣安 知之三木 光範
著者情報
会議録・要旨集 フリー

詳細
抄録
Data mining is the process to find some patterns or rules from the large volumes of data automatically. It is classified into six fields ; classification, estimation, prediction, association rule, clustering and profiling. We focus on data clustering and classify the similar data into same clusters. These clusters can be used in preparation of data analysis, finding segmentations in market and so on. We apply "Multiobjective clustering with automatic determination of the number of clusters: MOCK". MOCK uses two complementary objectives based on cluster compactness and connectedness, and returns a set of different trade-off partitioning over a range of different cluster numbers, k. It is able to find the appropriate number of clusters based on the information of the trade-off curve. In this paper, we considered the scalability of MOCK with along to the increase of the number of the data. Especially, we used web data clustering for examining the scalability.
著者関連情報
© 2006 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top