設計工学・システム部門講演会講演論文集
Online ISSN : 2424-3078
セッションID: 3305
会議情報

CTスキャンの高品質化のためのX線透過像の画像処理を行うCNN学習法
*渡部 太郎大竹 豊谷田川 達也鈴木 宏正佐々木 誠治今 正人
著者情報
会議録・要旨集 認証あり

詳細
抄録

X-ray CT, which is widely used as a non-destructive inspection method, has the problem of long measurement time. If the measurement time is too short, the transmitted image will be blurred or noisy, and the quality of CT volume will be reduced. Therefore, there is a trade-off between time reduction and quality. In this research, we aim to develop a method that can both shorten time and improve the quality. We train CNNs to improve image quality on a previously obtained dataset, and then apply the CNNs to another dataset. With the loss function proposed in this study, we can achieve high quality output results of CNN and we evaluated it with quantitative metrics and visuals.

著者関連情報
© 2021 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top