設計工学・システム部門講演会講演論文集
Online ISSN : 2424-3078
セッションID: 1109
会議情報

DEA駆動の多目的粒子群最適化
*Xu SiwenArakawa Masao
著者情報
会議録・要旨集 認証あり

詳細
抄録

The PSO algorithm uses the positions of personal best and global best to achieve results in single-objective optimization. To solve multi-objective optimization problems, this study introduces DEA to estimate Pareto Optimality and superior sets for each individual. With the Lagrange multiplier, we can calculate the target positions that may be close to the Pareto frontier, and use these positions as the global best for each individual. Then the efficiency of the current iteration result can be obtained by calculating the current best position of each individual with the position of the corresponding target on the Pareto Optimality. In this study, we employ the CCR model, a classic DEA model, and the Ranking method to solve the problem.

To demonstrate the effectiveness of the proposed method, we use several benchmark functions and modify the DEA-PSO model to suit the test function.

著者関連情報
© 2024 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top