流体工学部門講演会講演論文集
Online ISSN : 2424-2896
セッションID: OS05-17
会議情報

3次元シミュレーション上での深層強化学習により獲得した翼周り剥離流れのフィードバック制御戦略の解析
*髙田 直輝渡辺 綾乃下村 怜大友 衆示西田 浩之
著者情報
会議録・要旨集 認証あり

詳細
抄録

In this study, we performed deep reinforcement learning-based flow control using plasma actuator in a 3D CFD to improve the control system of a wind tunnel experiment. To achieve this, we analyzed the control strategy based on the trained controller using detailed visulizations of the flow field and control history. The target flow field is around the NACA0015 airfoil, and the flow condition is Re = 6.3 × 104, AoA = 14°, which is over 3° higher than the stall angle. As a result, we confirmed that the same control strategy was trained in the 3D CFD as in the experiment. Moreover, the trained controller achieved a higher L/D than conventional predetermined controls by combining F+ = 1 and F+ = 6.

著者関連情報
© 2024 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top