Abstract
This study is about the safety of nuclear reactor core submitted to seismic loading. In order to reduce the incertitude margin of the present day codes we propose to develop a numerical code including the non linear behavior of the fluid/structure coupling. The challenge of this work is to find out a tractable model taking the structure complexity into account. In this paper we model the nuclear reactor core mechanical behavior including the dynamics of both fuel assemblies and fluid. Each rod bundle is considered as a deformable porous media, so the velocity field of the fluid and the displacement field of the structure are defined in the whole domain space. Fluid part and structure part are in a first time considered separately, and in second time, the two parts are coupled. The motion equations of the structure are obtained by a Lagrangian formulation, and to allow the fluid structure coupling, the motion equations of the fluid are obtained by an Arbitrary Lagragian Eulerian formulation. The finite elements method is applied to spatially discretize the equations. Simulations have been performed to analyze the influence of the fluid and structure characteristics, phenomena observed by the experience have been reproduced qualitatively.