Abstract
Turbulent flow and temperature fields were determined numerically in a rectangular duct containing a heated rod. As the spacing δ between the rod and the duct wall decreased from 0.10D (D is the rod diameter) to 0.03D, coherent turbulent kinetic energy and temperature fluctuations dramatically increased in the gap region, but, for δ = 0.01D, coherent fluctuations essentially disappeared. As δ/D → 0, the frequency of coherent fluctuations decreased and cross-gap mixing weakened, contrary to predictions based on extrapolated available empirical correlations.