Abstract
The Province of Saskatchewan and Hitachi Canada have established a collaborative relationship to research design options and conduct feasibility analyses of Small Modular Reactor (SMR) technology with the goal of safely and reliably generating clean energy and helping to achieve a low-carbon society. The focus of this study is to optimize the design of an SMR Balance of Plant (BOP) for the supply of steam and heat to various residential, industrial and commercial applications. The study includes a review to examine if waste heat available from the proposed SMR could be used for producing potable water using nuclear desalination technology. It is in the context that large volumes of groundwater and brackish water are available in Saskatchewan, Canada. The existing literature on desalination processes are being reviewed, including technologies for water production such as Multiple Effect Distillation (MED), Multi Stage Flash (MSF), and Reverse Osmosis (RO). The review includes comparison of various technologies for energy efficiency and overall economics of the process. The Desalination Economic Evaluation program (DEEP) computer model available from International atomic energy agency (IAEA) is also used as a tool for examination. Factors such as salinity of the feedwater, advantages gained by pre-heating the feedwater and efficient utilization of waste heat generated in the SMR showed that technology based on RO will be the most cost effective technology. The conclusions are also supported in previous reviews done by GE and AMEC for the government of Alberta, Canada. The quality of product water produced using RO technology depends on impurities in the feed water. Therefore, trials in a pilot plant and in a semi commercial plant are proposed as next steps.