IIP情報・知能・精密機器部門講演会講演論文集
Online ISSN : 2424-3140
セッションID: IIPH-3-2
会議情報

回転式慣性センサと深層学習モデルを用いた屋内測位システムの開発
*小川 純平増西 桂小川 悦治小野 大騎宮崎 史登内田 健吾石橋 史隆村瀬 秀明冨澤 泰西川 浩行鮫田 芳富
著者情報
会議録・要旨集 認証あり

詳細
抄録

In this paper, we propose a direction estimation method using a self-rotating inertial sensor and a distance estimation method using an LSTM-based deep learning model to improve the positioning accuracy of two-dimensional moving objects such as AGVs. By rotating the inertial sensor, the direction is accurately calculated by correcting the sensor offset. With this method, it was confirmed that the direction error was reduced from 52° to 5° in 30 minutes of evaluation in a stationary state. In addition, we developed a distance estimation method using a deep learning model based on the information from the inertial sensor. We evaluated it using an AGV on a rectangular path and confirmed that it can estimate the moving distance with an accuracy of 0.7%.

著者関連情報
© 2024 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top