年次大会
Online ISSN : 2424-2667
ISSN-L : 2424-2667
2018
セッションID: S0520306
会議情報

深層強化学習を用いた固定翼周りの流れに対するフィードバック剥離制御の実験的研究
下村 怜関本 諭志福本 浩章大山 聖藤井 孝蔵西田 浩之
著者情報
会議録・要旨集 フリー

詳細
抄録

This paper experimentally investigates a closed-loop flow separation control system on a NACA 0015 airfoil using a DBD plasma actuator at the chord-Reynolds number of 63,000. The closed-loop control system is constructed utilizing the Deep Q-Network. The plasma actuator is installed to the surface of the airfoil at 5% of the chord length from the leading edge and driven with AC voltage. The time series data of surface pressure was used as the input data to the neural network, and the neural network is trained through the reinforce learning strategy (Q-learning) to select the optimum burst frequency of the actuator at angles of attacks of 12, 14, 14.5 degs. As a result, the trained neural network successfully selected the optimum burst frequency at 12 and 14 degs and controlled better than burst actuation with fixed F+ at angle of attack of 14.5deg.

著者関連情報
© 2018 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top