主催: 一般社団法人 日本機械学会
会議名: 2020年度 年次大会
開催日: 2020/09/13 - 2020/09/16
To investigate effects of dislocation density on microscopic stress distribution and macroscopic stress-strain relation, we conducted crystal plastic homogenization finite element analysis of Ti-6242 alloy subjected to in-plane reverse loading with dislocation density calculation. As a result, Statistically Stored (SS) dislocation density increased with occurrence of slip deformation for all conditions. On the other hand, Geometrically Necessary (GN) dislocation density was less likely to accumulate at the interface in the parallel relationship between primary slip systems of hcp and bcc. Although GN dislocations only develop near the interface, a large increase in GN dislocation density affects the macroscopic stress-strain relation.