年次大会
Online ISSN : 2424-2667
ISSN-L : 2424-2667
セッションID: J063-10
会議情報

潜在ベクトルとスパース回帰を用いた流れ場時系列解析:
データ駆動型流れ制御に向けて
*深見 開村田 高彬張 凱兼平 昇英深潟 康二
著者情報
会議録・要旨集 認証あり

詳細
抄録

Machine learning has recently emerged as a powerful tool for a variety of analyses in fluid mechanics. We here introduce our recent efforts on applications of reduced-order modeling aided by autoencoder and sparse regression to fluid flow data. The present method is able to extract low-dimensional manifolds of fluid flows utilizing autoencoder while deriving its dynamics as an ordinary differential equation with the assistance of sparse identification of nonlinear dynamics. The extension of the present machine-learning-based reduced-order modeling to flow control applications will also be introduced in the talk.

著者関連情報
© 2021 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top