年次大会
Online ISSN : 2424-2667
ISSN-L : 2424-2667
セッションID: S141p-02
会議情報

作業者を考慮したジョブショップスケジューリング
(ニューラルネットワークを用いた優先規則の学習)
*吉田 拓未江口 透村山 長
著者情報
会議録・要旨集 認証あり

詳細
抄録

This paper deals with a job shop scheduling problem that considers the skill difference of operators. A priority rule for this problem is constructed using a neural network. A neural network learns from input-output pairs extracted from a schedule optimized using an IP solver for small-scale problem instances. Through numerical experiments, it was found that trained neural network by the proposed method showed better performance than the existing priority rules even in larger scale problem instances.

著者関連情報
© 2023 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top