年次大会講演論文集
Online ISSN : 2433-1325
会議情報
3913 ニューラルネットワークを用いたロボットの学習インピーダンス制御
肖 南峰藤堂 勇雄
著者情報
会議録・要旨集 フリー

p. 583-584

詳細
抄録
A learning impedance control approach based on neural networks is presented for a robot to accomplish some contact tasks. Firstly, a velocity-based discrete-time impedance control law is obtained to control the position and contact force of the robot in the same direction. Secondly, a computational method for generating the reference inputs of the robot control system is given for the contact task of the robot. Thirdly, on-line learning algorithms using neural networks are developed to adjust the inertia, damping and stiffness parameters of the robot in the unknown contact environments. Lastly, the effectiveness of the present approach is verified by pressing a spring using a 6 degrees of freedom robot. The adaptiveness, stability and flexibility of the present approach are also confirmed.
著者関連情報
© 2000 一般社団法人日本機械学会
前の記事 次の記事
feedback
Top