Abstract
A long-term life prediction method for a compressed fiber sheet gasket under an elevated temperature environment is studied. Non-asbestos compressed fiber sheet gaskets are now being used as a substitute for asbestos in the bolted flange joint. Consequently, there is a real need for a technology to predict the lifetime of non-asbestos compressed fiber sheet gaskets quantitatively. In this report, the facing surface of the gasket and flange is visualized with scanning acoustic tomography (SAT). Voids were observed on the facing surface of the gasket and increased with the increase in exposure time at elevated temperature. If a leak path for inner fluids is created by the increasing number of voids, the leak occurs on the facing surface of the gasket. The probability of a leak due to voids and the lifetime of this gasket are predicted by applying the percolation theory, which describes the connectedness of clusters.