主催: 一般社団法人 日本機械学会
会議名: M&M2018 材料力学カンファレンス
開催日: 2018/12/22 - 2018/12/24
It is well-known that traditional fossil energy sources such as oil are limited. Hydrogen is attracting the attention of the world because it is renewable, plentiful in supply, clean and non-toxic. Cu2O is a promising material for solar water splitting because it has an impressive performance as photocathode. It is a p-type semiconductor and with a band gap of 2.0 eV, which could theoretically deliver a solar to hydrogen conversion efficiency of 18% for water splitting. In this research, we use tube furnace to fabricate Cu2O nanowire (NW) by thermal oxidation and reduction process of thin copper plate. Different experimental conditions (temperature, time and gas flow rate) were investigated to find out the best parameters for nanowire synthesis (diameter, length, and number density of NW) which is better for the photoelectrochemical system.