M&M材料力学カンファレンス
Online ISSN : 2424-2845
セッションID: OS0402
会議情報

畳み込みニューラルネットワーク用いたECT信号からのキズ深さ同定
*出町 和之堀 智之
著者情報
会議録・要旨集 フリー

詳細
抄録

Eddy current testing (ECT) is a nondestructive inspection method for detecting cracks and defects in conductive materials such as thin heat transfer tubes of steam generator. ECT applies inverse problem analysis for crack shape estimation, but in many cases requires large CPU time and memory. In this study, an application of convolutional neural network (CNN), which is one of deep learning models, was proposed and showed the possibility of high-speed estimation of crack depth.

著者関連情報
© 2019 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top