Abstract
Bipolar-type plasma based ion implantation and deposition (bipolar PBII&D) is a promising surface coating technique for complex-shaped target surfaces. In this study, diamond-like carbon (DLC) films were deposited on steel rods with various radii of curvatures using bipolar PBII&D and the plasma behavior in surrounding of the steel rods (i.e., flux and energy of incident ions and electrons) was calculated using Particle-In-Cell Monte Carlo Collision (PIC-MCC) Method. The positive and negative pulse voltages varied from +1.0 to +1.5 and from -1.0 to -5.0, respectively. The structure of DLC films was evaluated by Raman spectroscopy and the hardness of DLC films was measured using nanoindentation. It was found from Raman and nanoindentation measurements that the structures of DLC films coated on the rod-shaped surfaces are different from those of DLC films coated on the flat-shaped surfaces, which are affected by the flux and energy of incident ions and electrons.