「運動と振動の制御」シンポジウム講演論文集
Online ISSN : 2424-3000
セッションID: D22
会議情報

ほうきの掃き操作を模倣するロボットアームにおける深層学習
*笹竹 晴萌田崎 良佑山下 貴仁内山 直樹
著者情報
会議録・要旨集 認証あり

詳細
抄録

The function of robot manipulation can be extended by attaching tools to end-effector. In addition, deep imitation learning can be used to make the robot arm imitate the use of tools. However, deep learning requires a large number of iterations. Therefore, It is not suitable in actual clearing scene. In this paper, a method to reduce the number of training iterations is proposed by loading deep learning parameters that represent the usage of another tools as initial values. In this paper, the reduced number of iterations and the effectiveness of the method are confirmed. A cleaning experiment is also conducted with silica sand.

著者関連情報
© 2021 一般社団法人 日本機械学会
前の記事
feedback
Top