機械材料・材料加工技術講演会講演論文集
Online ISSN : 2424-287X
セッションID: 613
会議情報

機械学習を用いたAE信号の分類法
張 格于 豊銘岡部 洋二
著者情報
会議録・要旨集 フリー

詳細
抄録

The authors proposed a new classification method of AE signals using a machine learning to identify damage types occurring inside CFRP laminates. In this method, the temporal waveforms of AE signals were used as training data to develop the autoencoder. An AE signal generated by a transverse crack and that by delamination can be differently characterized by A0 and S0 modes in AE depending on the different source orientations. The results of the data analysis indicated that the autoencoder has a good performance to identify AE signals with different source orientations. Therefore, the proposed method has a reliability to identify damage types in CFRP laminates.

著者関連情報
© 2018 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top