最適化シンポジウム:OPTIS
Online ISSN : 2433-1295
セッションID: 1103
会議情報
1103 バギングとブースティングの併用によるSVMにおける効率的な学習法の提案(近似最適化・同定)
尹 禮分中山 弘隆
著者情報
会議録・要旨集 フリー

詳細
抄録
The performance of machine learning such as support vector machines and radial basis function neural networks depends on parameters, for example the width of Gaussian function and a regularization parameter. One of most popular methods for estimating parameters is cross validation (CV) test, however CV test is usually time consuming. In this research, we propose an effective learning method using bagging and boosting in order to reduce the burden on choosing the width of Gaussian function as well as the sensitivity to it. Additionally, we show that comparing with the calculation time by a single machine, the one by the proposed learning method can be improved without losing a performance of generalization ability through several numerical experiments.
著者関連情報
© 2014 一般社団法人日本機械学会
前の記事 次の記事
feedback
Top