最適化シンポジウム講演論文集
Online ISSN : 2424-3019
セッションID: 2106
会議情報

多数目的進化計算手法における交叉手法の差異の影響
丸山 翔平立川 智章田邉 遼司大山 聖
著者情報
会議録・要旨集 フリー

詳細
抄録

This study evaluates the effect of crossover operators in many-objective evolutionary algorithms (MOEAs). We consider NSGA-III , ε-MOEA, MOEA/D and IBEA as major MOEAs. In each MOEA, we apply SBX, DE, SPX, PCX and UNDX as crossover operators. Test problems are DTLZ2 and DTLZ3. In this study, Generational Distance (GD) metric is used to evaluate not only the convergence performance of finally obtained pareto optimal set but also the running convergence performance. When we change the number of objective functions for each test problem, we investigate the difference in the convergence performance among crossover operators in each MOEA. As a result, we can confirm that the effective crossover operator is changed by both the problem property and the number of objectives.

著者関連情報
© 2016 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top