最適化シンポジウム講演論文集
Online ISSN : 2424-3019
セッションID: U00071
会議情報

深層学習を用いた異方性弾性体中の欠陥形状再構成
*斎藤 隆泰
著者情報
会議録・要旨集 認証あり

詳細
抄録

In this study, the shape reconstruction method of a cavity is developed for 2-D pure antiplane anisotropic elastodynamics. Elastic wave scattering by a cavity is implemented by using the convolution quadrature time-domain boundary element method. Scattered waves obtained at receiver points are prepared and utilized for the deep learning. The created deep learning model estimates position and size of a cavity in 2-D pure antiplane anisotropic solids. Numerical example shows that deep learning can be useful for inverse analysis of a defect in anisotropic elastic materials.

著者関連情報
© 2022 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top