Host: The Japan Society of Mechanical Engineers
Name : [in Japanese]
Date : June 05, 2019 - June 08, 2019
In table tennis robots, a spinning ball is difficult to be returned to the opponent court because its direction of bound is dependent on the spinning direction and amount. We aimed to solve this problem by swing motion that is robust over a large range of spinning pattern without accurate recognition of spinning. Specifically, we examined the relation between swing speed and returning direction. When the racket speed was 7 m/s, the difference of returning direction reduced to 20 % compared to no swing against the spinning ball in the range from -20 rev/s to 20 rev/s. In addition, we focused on the flexibility of swinging arm to increase the swing speed. We found that a flexible arm swung faster than a rigid arm in the whole range of motion when exploiting the joint angle limit.