評価・診断に関するシンポジウム講演論文集
Online ISSN : 2424-3027
会議情報
202 ウェーブレット変換によるテンションアラーム波形の特徴抽出と分類
増田 新村上 恭通曽根 彰
著者情報
会議録・要旨集 フリー

p. 71-75

詳細
抄録
This paper concerns a preliminary study of classifying the abnormal tension signals observed in the draw-texturing machines, which correspond to various types of abnormal events. The wavelet transform with inhomogeneous shift sampling is used to extract the feature vectors from the tension signals. Then, the self-organizing map (SOM) algorithm is performed on the feature vectors to carry out the unsupervised classification of the signals. The results agree with the classification by skilled engineers that is based on their experience.
著者関連情報
© 2002 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top