Abstract
A volumetric solar receiver receives the concentrated radiation generated by a large number of heliostats. Heat transfer takes place from the receiver solid phase to the air as it passes through the porous receiver. Such combined heat transfer within the receiver, associated radiation, convection and conduction, are investigated using a local thermal non-equilibrium model. Analytic solutions are obtained for the developments of air and ceramic temperatures as well as the pressure along the flow direction. The results show that the pore diameter must be larger than its critical value to achieve high receiver efficiency. Subsequently, there exists an optimal pore diameter for achieving the maximum receiver efficiency under the equal pumping power.