Journal of Smooth Muscle Research
Online ISSN : 1884-8796
Print ISSN : 0916-8737
ISSN-L : 0916-8737
Original
Histamine-induced cytosolic calcium mobilization in human bronchial smooth muscle cells
Kyung Jin ChoiWoo Young JeonMee Young LeeSe Hoon KimHyung Seo Park
著者情報
ジャーナル フリー

2025 年 61 巻 p. 29-42

詳細
抄録

Histamine is a well-known mediator of bronchoconstriction. Despite the widespread use of histamine as a tool to study the bronchial smooth muscle function, the precise mechanism by which it causes calcium mobilization in bronchial smooth muscle cells remains unclear. Therefore, the current study aimed to investigate the mechanism of action of histamine in calcium mobilization in cultured human bronchial smooth muscle cells. A series of in vitro calcium imaging experiments have shown that histamine increases intracellular calcium levels in a concentration-dependent manner. The half maximum concentration of cytosolic Ca2+ peak was 3.00 ± 0.25 µM of histamine. Histamine was able to mobilize calcium from intracellular stores, even in the absence of extracellular calcium. These histamine-induced calcium elevations were completely blocked by the H1 receptor antagonist chlorpheniramine (1 µM). Histamine-induced calcium elevation was also completely inhibited by the phospholipase C (PLC) inhibitor U73122 (1 µM) and inositol 1,4,5-trisphosphate (InsP3) receptor inhibitor caffeine (20 mM). Cyanide p-(trifluoromethoxy)phenylhydrazone (1 µM) and oligomycin (1 µg/ml) effectively attenuated histamine-induced calcium release from intracellular stores. In the presence of histamine, cytosolic calcium elevation induced by reperfusion of 1.28 mM extracellular calcium after the depletion of stores was significantly inhibited by FCCP and oligomycin, unlike in the presence of thapsigargin. Based on the above results, we can conclude that histamine activates the intracellular PLC/InP3 pathway through the H1 receptor, which in turn activates the InP3 receptor present in intracellular stores to mobilize calcium in human bronchial smooth muscle cells. In addition, the mitochondria appear to be involved in the release of calcium from intracellular stores. These results provide insights into the mechanisms underlying histamine-induced calcium mobilization for bronchoconstriction under pathophysiological conditions.

著者関連情報

この記事はクリエイティブ・コモンズ [表示 - 非営利 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc/4.0/deed.ja
前の記事 次の記事
feedback
Top