Journal of the Society of Materials Science, Japan
Online ISSN : 1880-7488
Print ISSN : 0514-5163
ISSN-L : 0514-5163
Original Papers
Evaluation of Microstructure for High-Strength Reaction-Sintered Silicon Carbide
Yoshiyasu ITOHShoko SUYAMA
Author information
JOURNAL FREE ACCESS

2008 Volume 57 Issue 3 Pages 304-309

Details
Abstract
A newly developed high-strength reaction-sintered silicon carbide (SiC), which has two or three times higher strength than the normal sintered SiC, is one of the most promising candidates such as the lightweight substrate of optical mirror, because of fully dense, small sintering shrinkage (±1%), good shape capability and low sintering temperature. In this paper, in order to improve the performance of newly developed reaction-sintered SiC, the microstructure was investigated by paying attention to the crystal structures and the interface of each crystals using the observation of transmission electron microscope and X-ray diffraction analysis. As a result, it made clear that the finer-scale microstructure could be observed as consisting of large particles (∼1μm in diameter) of starting powder α–SiC and small particles (<1μm in diameter) of β–SiC formed during the reaction (Si+C→SiC) with the residual silicon filling the remaining porosity. Also, it was identified that the β–SiC formed during the reaction referred to the cubic (3C) polytype and the α–SiC of starting powder referred to the hexagonal (6H) polytype.
Content from these authors
© 2008 by The Society of Materials Science, Japan
Previous article Next article
feedback
Top