Journal of the Society of Materials Science, Japan
Online ISSN : 1880-7488
Print ISSN : 0514-5163
ISSN-L : 0514-5163
Original Papers
Effect of Laser Patterning Preprocessing on Fatigue Strength of Adhesive Bonded Joints Using Thin Steel Plate
Katsuki SHIKIMOTOShogo ISHIDAWataru JINNOUCHIYuki OGAWAHiroyuki AKEBONOAtsushi SUGETA
Author information
JOURNAL FREE ACCESS

2019 Volume 68 Issue 12 Pages 890-896

Details
Abstract

It is necessary for automobiles to reduce the weight of car bodies against environmental problems. As a countermeasure, a multi-material structure is required to construct the automobile body structure using not only steel but also light metal materials and carbon fiber reinforced plastic. So, it is necessary to produce high-quality welds applying to those dissimilar materials, as quickly as possible. Therefore, adhesive bonding has attracted attention from the viewpoint of building multi-material structures. However, from the viewpoint of durability and reliability, it is regarded as a complementary technique for other industrial welding methods. Moreover, to further improve the strength of adhesive bonding, the surface condition of the adherent is important. In this study, in order to improve the interfacial strength of adhesive bonded joint, the laser patterning preprocessing was applied as the surface treatment. So, the fatigue properties of adhesive bonded joints were evaluated to compare the untreated joints. As a result, the static and fatigue strength of the joints were improved by the laser patterning preprocessing. In particular, the joint strength was further improved by removing the weak boundary layer on the entire surface with the laser irradiation. Therefore, the laser patterning preprocessing proposed in this study is a very useful process for achieving the adhesive bonded joints with excellent fatigue properties.

Content from these authors
© 2019 by The Society of Materials Science, Japan
Previous article Next article
feedback
Top