材料
Online ISSN : 1880-7488
Print ISSN : 0514-5163
ISSN-L : 0514-5163
Ni基単結晶超合金CMSX-10の高温疲労における破壊プロセスの解明と表面酸化層除去のき裂発生に及ぼす効果
多田 直哉大谷 隆一柴田 昌宜小林 智光
著者情報
ジャーナル フリー

2001 年 50 巻 2 号 p. 129-136

詳細
抄録
Fatigue tests were conducted at 1273K using smooth bar specimens of a nickel-based single crystal superalloy CMSX-10, and small cracks were observed on the surface of the specimens by means of microscope. It was clarified by the observation that fatigue fracture of CMSX-10 takes place as follows; (1) Oxide-layer was formed on the surface of the specimen. (2) A lot of small cracks of the size of about 100μm were initiated perpendicular to the stress axis on the surface of the oxide-layer. (3) Some of them grew and penetrated the oxide-layer to reach the base metal. Processes (1) to (3) were completed at the very early stage of fatigue life. (4) Growth of the cracks that reached the base metal brought about the final fracture. As the formation of oxide-layer on the surface of the specimen was considered to be a trigger of crack initiation, a fatigue test was also conducted with repeated removal of the oxide-layer by emery paper and diamond paste. In this test, no crack appeared on the surface of the specimen even at 20000 cycles when a lot of cracks were observed in the normal fatigue tests. This proves that removal of the oxide-layer retards the initiation of small cracks and extends the fatigue life.
著者関連情報
© 日本材料学会
前の記事 次の記事
feedback
Top