抄録
We investigated the effect of an epoxy surface layer to improve the impact damage resistance in carbon-fiber-reinforced-plastic (CFRP) laminate. The specimens were CFRP laminates covered on the impact face or the back face with a highly viscous epoxy resin. The thickness of the epoxy layer was 1.0mm or 2.0mm. Projectiles were launched from an air gun and impacted onto the laminates. The projectiles were made of silicone rubber or aluminum alloy. C-scan images obtained with a scanning acoustic microscope after the tests revealed that the damage mechanism for the CFRP laminates is independent of the surface-layer material and the material properties of the projectile. When we compared the contact area, the crack length on the back face and the delamination areas on each specimen, we found that the epoxy surface layer improved the impact damage resistance of the CFRP laminate. The epoxy surface layer on the impact face decreased the impact force transferred to the laminate, and that layer on the back face suppressed the generation and propagation of fiber-directional matrix cracking on the back face during impact.